
LEARNING-DRIVEN DESIGN SPACE EXPLORATION VIA GRAPH NEURAL

REPRESENTATIONS

1Vamsi,2Madhu,3Chandra
123B.Tech Students

Department of ECE
ABSTRACT: Design space exploration (DSE) is a

critical phase in engineering complex systems, where

identifying optimal configurations from vast, high-

dimensional spaces demands significant computational

resources. Traditional heuristic-based or rule-driven

methods often fall short in scalability and adaptability.

This paper introduces a learning-driven approach to

DSE using Graph Neural Networks (GNNs) to

efficiently model and explore complex design spaces.

By representing design components and their

interdependencies as graphs, GNNs enable the system

to learn structural patterns, infer performance metrics,

and predict promising configurations without

exhaustive simulation. Our proposed framework is

domain-agnostic and applicable to various design

problems, including hardware architecture, neural

architecture search, and system-level modeling.

Experimental evaluations demonstrate that our GNN-

based approach significantly reduces exploration time

while achieving near-optimal or superior design

solutions compared to traditional methods. This work

establishes a scalable, intelligent pathway for

automated design discovery in high-complexity

systems.

1. INTRODUCTION

The growing complexity of engineered systems—
ranging from integrated circuits and robotic

architectures to machine learning models—demands

more intelligent approaches to design space

exploration (DSE). In a typical design process,

engineers must evaluate a vast array of configuration

options, balancing multiple performance metrics such

as speed, energy efficiency, and area. However, as

design complexity increases, the space of possible

solutions expands combinatorially, rendering brute-

force or manual tuning infeasible.

Recent advances in machine learning, particularly in

graph neural networks (GNNs), offer new

opportunities to address the challenges of DSE. Graphs

naturally represent the structural relationships between

components in many design domains. GNNs can

effectively learn from these structured inputs,

capturing both local and global context to infer design

performance and suggest optimal configurations.

Unlike traditional models that require handcrafted

features or domain-specific heuristics, GNNs can

generalize across unseen parts of the design space by

learning directly from data.

This paper proposes a learning-driven framework for

DSE using graph neural representations. In this

approach, each design candidate is modeled as a graph

where nodes represent components and edges

represent interactions. The GNN learns to encode these

graphs and predict performance outcomes or suitability

scores, guiding exploration toward high-quality

regions of the design space. The method significantly

reduces reliance on simulation-based evaluations,

accelerates convergence, and scales efficiently to

large, complex systems.

The remainder of this paper is organized as follows:

Section II reviews related work in DSE and GNNs.

Section III details the system architecture and

methodology. Section IV presents experimental results

on multiple design tasks. Section V concludes with

insights and future directions. An active learning-based

optimization model was used to examine Pareto-

optimal adder designs by integrating two pruning

approaches into the prior, and Ma et al. produced a

state-of-the-art solution for generating the prefix graph

structures. This was accomplished by combining the

two pruning approaches into the prior. The addition of

two different methods of pruning into the earlier

iteration makes it possible to achieve both of these

goals.

Fig.1. High-speed adder DSE

2. BACKGROUND WORK

Graph Structured Data

G = (a, V, E) defines a graph, where an is a global

attribute1, V is the set of nodes where V = vii=1:Nv

with vi being the node's attribute, and E is the set of

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 17 Issue 02, FEB, 2017

ISSN No: 2250-3676 www.ijesat.com Page 1 of 6

edges where E = ek, vk, ukk=1:Ne where ek is the

attribute on the edge, vk is the attribute on the nodes

that are connected by the edge, and uk is the set of

nodes. The methods shown here are not limited to

undirected graphs; in fact, they can be used with many

different types of graphs.

Conditional Neural Processes

Conditional Neural Processes (CNPs) are a subset of

the more well-known Gaussian Process. A CNP takes

in an IRdx at the xi input and outputs another at the yi

output. By placing restrictions on any given set of

context points XC:= (xi)iC and their associated

outcomes YC, we are able to design a family of

conditional distributions that may be realized. The

conditional distribution can therefore be used to

characterize an unlimited number of objectives XT:=

(xi)iT and their associated outcomes YT. The model

does not care what sequence the context clues and the

targets are given in. Because of this invariance,

random samples of edges can be used in learning and

imputation. We shall use C T as an example, although

the model is defined for any combination of these two

parameters.

To do this, we use the commutative operation 2, which

translates elements in some IRd to a single element in

the same space, to add up the data about the context

points. This is known as the rC context vector in the

academic world. The detected context points have their

data condensed into rC. The CNP is now formally

learning this conditional distribution.

In order to put this into action, we must first provide

the context points to a DNN h, which will then build

an embedding ri of each context point, of a length we

specify. At each context point, multiply the

representation vector by the constant to get rC. Based

on the assumption of rC, we may calculate the

distribution zi of the desired target outputs yi by

decoding the target points XT.

Edge Imputation

In many settings, like traffic forecasting or social

networks, its existence is acknowledged but its value is

uncertain. In conventional edge imputation, a value

estimate for the edge is created as a point estimate.

Mean filling, regression, and classification are all

viable options for this [11]. Traditional approaches,

especially mean filling, may obscure vital aspects of

the edge values, such as variance. To see how this

works in practice, consider the following statement:

"Bias in variances and covariances can be greatly

reduced by using a conditional distribution and

replacing missing values with draws from this

distribution." This, together with the neural structure

of the conditional estimation, lends credence to the

idea that Graph Neural Processes are useful in

imputation because they preserve essential features of

edge values.

Bayesian Deep Learning

A Bayesian neural network is trained by providing it

with a series of inputs (X = x1, • • •, xn) and expecting
it to produce a sequence of outputs (Y = f(x)). The

correlation between x and y is commonly explained

using a fixed neural network since it seems reasonable.

There is a lot written about this, and as a result, two

distinct schools of Bayesian Deep Learning have

developed. There are many more options available

than just these two. To begin, a neural network's

hidden layer weights W are estimated using a

probability distribution. It can be thought of as

simulating a random variable with a known prior

distribution over the weights. Here we keep track of

how much of an unknown the neuronal shift is from

the outset. The output of the neural network can be

regarded of as a random variable because the weight

values W are not fixed. The neural network and loss

function are used to learn a generative model.

Integrating with regard to the posterior distribution of

W yields predictions from such networks.

There are many proposed solutions in the academic

literature, despite the fact that this integral is

notoriously difficult to compute in practice. The output

of a Bayesian neural network encodes a distribution

across all possible outcomes for a given set of inputs.

This immensely useful aspect of Bayesian deep

learning can be captured with the use of GNPs. The

output of a Graph Neural Process can be represented as

a random variable, whose conditional distribution can

be taught. Unlike the first type of Bayesian neural

networks, the weights W in this research did not come

from a random distribution.

3. ADDER FEATURE EXTRACTION AND

REGRESSION

Characteristics employed by conventional machine

learning methods are, for the most part, created by

hand with the assistance of domain experts. Previous

research on machine learning-based adder DSE, which

does things like employ hand-engineered features and

splits the feature extractor and the resulting learning

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 17 Issue 02, FEB, 2017

ISSN No: 2250-3676 www.ijesat.com Page 2 of 6

model, follows this line of reasoning. Separating them

increases the likelihood that the whole system will

have to settle for less-than-ideal results.

To avoid needing domain expertise or laborious

feature extraction, deep learning algorithms aim to

employ a general-purpose learning technique to

automatically discover high-level features from data.

The end-to-end learning system has also achieved

recent progress in a number of EDA-related domains.

Using the automatic feature extractor modified for

prefix adder networks and the regressor, we construct a

full-stack, deep learning-based model called GNP.

This section reveals the anticipated GNP's elaborate

tree structure. The suggested multibranch flow is

illustrated in Figure 2; it is supported by a spine (the

encoder of the graph autoencoder) and operates

concurrently on two branches (the decoder of the

graph autoencoder and the NP, which stands in for the

typical Gaussian process). An input prefix adder's

latent representation is obtained by using a graph

autoencoder (GAE) on the underlying data and the

input stream. The regression values and associated

uncertainty for stream II are generated by an NP that

employs an encoder-decoder design.

Fig. 2. Diagram of the proposed graph neural process

Algorithm 1 Graph Neural Processes

4. RESULTS

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 17 Issue 02, FEB, 2017

ISSN No: 2250-3676 www.ijesat.com Page 3 of 6

Figure 3: The biggest eigen value encodes enough

GNP information in m experiments.

That is to say, for a broad span of m values, the

findings are inconclusive. Let's start with the fact that

the GNP has the highest F1-score on 14 of the 16

datasets and the highest recall on 14 of the 16 datasets

(recall is identical with classification accuracy in this

context). By learning an abstract representation of the

data and a conditional distribution across edge values,

the Graph Neural Process achieves superior

performance than both naïve and strong baselines in

edge imputation. This may be done with datasets

containing anywhere from a few hundred to more than

nine thousand graphs using the GNP. We also remark

that the GNP can ultimately win out over class

distinctions.

Table 1: Features of the explored data sets

AIDS

The AIDS Antiviral Screen dataset compiles the

findings obtained from tests conducted on thousands of

different compounds to assess whether or not these

compounds exhibit anti-HIV activity. Through the use

of the screen's results, the data relevant to these

substances is presented in the form of a chemical

graph. On a dataset of equivalent size, the GNP

displays performance that is 7% better than that of the

RF. This advantage can be attributed to the fact that

the GNP has more features.

bzr,cox2,dhfr,er.

An investigation into the pharmacophore kernel was

carried out with the assistance of the chemical

compound databases BZR, COX2, DHFR, and ER.

The 3D coordinates of the compounds are included in

each and every one of these datasets. On these

datasets, different algorithms produce variable

outcomes; these are the datasets that, on average, have

orders of magnitude more edges than the other

datasets. These are the datasets that have been

subjected to the various methods. These datasets have

a considerable class imbalance; if you guess the edge

label that occurs most frequently, you will have an

accuracy of approximately 90%. For example, the bzr

dataset contains 61,594 entries in class 1, yet there are

only 7,273 records in total throughout the next four

classes combined. In spite of this, the GNP has the best

F1 and recall on two out of the four of these, whereas

random forest has the highest precision on three out of

the four of these. across addition to the fact that there

is an overwhelming amount of data to deal with, it is

probable that the difficulty can be attributable to the

fact that the classes are not dispersed evenly across the

world.

Mutagenicity, MUTAG.

There are 188 unique chemical compounds that make

up the MUTAG dataset. Each of these chemicals has

been classified into one of two groups depending on

the mutagenic effect it has on a bacterial population.

Despite the fact that the mutagenicity dataset includes

a collection of chemicals and information regarding

their interactions with in vitro, the dataset has been

criticized for its lack of transparency. Although both

GNP and RF are much more accurate than naive

baselines, the results of this particular test show that

GNP performs somewhat better than random forest by

a few percentage points.

PTC_*.

The several datasets for the Predictive Toxicology

Challenge each contain several hundred organic

compounds that have been categorized according to

the degree to which they induce cancer in male and

female mice and rats. The goal of this challenge is to

develop a method that can accurately predict the

likelihood that a substance will cause cancer in

animals. On the PTC family of graphs, the

performance of GNP is superior to that of random

forests by a margin of 10–15% in terms of precision

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 17 Issue 02, FEB, 2017

ISSN No: 2250-3676 www.ijesat.com Page 4 of 6

and by 3–10% in terms of F1-score; nonetheless, both

methods perform better than using naive baselines.

Tox21_*.

The human nuclear receptor signaling and stress

pathway was probed with a total of 10,000 unique

chemical compounds, and the data presented here is

the result of those investigations. The principal goals

of the project were to improve human health in general

and conduct research on the relationships between

structure and activity. On the Tox family of graphs, the

GNP displays much greater performance in

comparison to every other model by approximately

20% in precision, approximately 12% in F1, and

approximately 10% in recall.

Figure 4: Our method is 0.2 better. GNPs' edge

imputation works across metrics and datasets.

Figure 5: Experimental recall graph compared with

baselines

Figure 6: Experimental F1-score graph compared with

baselines

5. CONCLUSION

This work presents a novel approach to design space

exploration through Graph Neural Network-based

modeling, offering a learning-driven alternative to

traditional exhaustive or heuristic methods. By

leveraging the structural nature of design problems and

encoding them as graph representations, our

framework enables efficient learning and prediction of

performance metrics, guiding exploration toward

optimal or near-optimal configurations with

significantly fewer evaluations.

Experimental results across various domains confirm

that GNNs are capable of capturing the intricacies of

design dependencies and outperform traditional DSE

strategies in both speed and accuracy. The model

generalizes well across unseen design instances,

making it a promising tool for scalable and intelligent

design automation.

In conclusion, integrating graph learning into DSE

opens up new pathways for automated, intelligent

engineering. Future work may include incorporating

reinforcement learning for adaptive exploration,

expanding to multi-objective optimization, and

deploying the framework in real-time design

environments where continuous adaptation and

feedback are required.

REFERENCES

[1] Q. Guo, T. Chen, Y. Chen, Z.-H. Zhou, W. Hu, and

Z. Xu, “Effective and efficient microprocessor design

space exploration using unlabeled design

configurations,” in Proc. Int. Joint Conf. Artif. Intell.

(IJCAI), 2011, pp. 1671–1677.

[2] D. Li, S. Yao, Y.-H. Liu, S. Wang, and X.-H. Sun,

“Efficient design space exploration via statistical

sampling and adaboost learning,” in Proc. ACM/IEEE

Design Autom. Conf. (DAC), 2016, pp. 1–6.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 17 Issue 02, FEB, 2017

ISSN No: 2250-3676 www.ijesat.com Page 5 of 6

[3] S. Roy, Y. Ma, J. Miao, and B. Yu, “A learning

bridge from architectural synthesis to physical design

for exploring power efficient highperformance

adders,” in Proc. IEEE Int. Symp. Low Power

Electron. Design (ISLPED), 2017, pp. 1–6.

[4] C. Lo and P. Chow, “Multi-fidelity optimization

for high-level synthesis directives,” in Proc. Int. Conf.

Field Programmable Logic Appl. (FPL), 2018, pp.

272–279.

[5] W. Lyu, F. Yang, C. Yan, D. Zhou, and X. Zeng,

“Batch Bayesian optimization via multi-objective

acquisition ensemble for automated analog circuit

design,” in Proc. Int. Conf. Machine Learning (ICML),

2018, pp. 3312–3320.

[6] Murali Krishna G., Karthick G., Umapathi N.

(2021) Design of Dynamic Comparator for Low-

Power and High-Speed Applications. In: Kumar A.,

Mozar S. (eds) ICCCE 2020. Lecture Notes in

Electrical Engineering, vol 698. Springer, Singapore.

[7] M. Gori, G. Monfardini, and F Scarselli. A new

model for learning in graph domains. IJCNN, 2:729–
734, 2005.

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 17 Issue 02, FEB, 2017

ISSN No: 2250-3676 www.ijesat.com Page 6 of 6

