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ABSTRACT: Design space exploration (DSE) is a 

critical phase in engineering complex systems, where 

identifying optimal configurations from vast, high-

dimensional spaces demands significant computational 

resources. Traditional heuristic-based or rule-driven 

methods often fall short in scalability and adaptability. 

This paper introduces a learning-driven approach to 

DSE using Graph Neural Networks (GNNs) to 

efficiently model and explore complex design spaces. 

By representing design components and their 

interdependencies as graphs, GNNs enable the system 

to learn structural patterns, infer performance metrics, 

and predict promising configurations without 

exhaustive simulation. Our proposed framework is 

domain-agnostic and applicable to various design 

problems, including hardware architecture, neural 

architecture search, and system-level modeling. 

Experimental evaluations demonstrate that our GNN-

based approach significantly reduces exploration time 

while achieving near-optimal or superior design 

solutions compared to traditional methods. This work 

establishes a scalable, intelligent pathway for 

automated design discovery in high-complexity 

systems. 

1. INTRODUCTION 

The growing complexity of engineered systems—
ranging from integrated circuits and robotic 

architectures to machine learning models—demands 

more intelligent approaches to design space 

exploration (DSE). In a typical design process, 

engineers must evaluate a vast array of configuration 

options, balancing multiple performance metrics such 

as speed, energy efficiency, and area. However, as 

design complexity increases, the space of possible 

solutions expands combinatorially, rendering brute-

force or manual tuning infeasible. 

Recent advances in machine learning, particularly in 

graph neural networks (GNNs), offer new 

opportunities to address the challenges of DSE. Graphs 

naturally represent the structural relationships between 

components in many design domains. GNNs can 

effectively learn from these structured inputs, 

capturing both local and global context to infer design 

performance and suggest optimal configurations. 

Unlike traditional models that require handcrafted 

features or domain-specific heuristics, GNNs can 

generalize across unseen parts of the design space by 

learning directly from data. 

This paper proposes a learning-driven framework for 

DSE using graph neural representations. In this 

approach, each design candidate is modeled as a graph 

where nodes represent components and edges 

represent interactions. The GNN learns to encode these 

graphs and predict performance outcomes or suitability 

scores, guiding exploration toward high-quality 

regions of the design space. The method significantly 

reduces reliance on simulation-based evaluations, 

accelerates convergence, and scales efficiently to 

large, complex systems. 

The remainder of this paper is organized as follows: 

Section II reviews related work in DSE and GNNs. 

Section III details the system architecture and 

methodology. Section IV presents experimental results 

on multiple design tasks. Section V concludes with 

insights and future directions. An active learning-based 

optimization model was used to examine Pareto-

optimal adder designs by integrating two pruning 

approaches into the prior, and Ma et al. produced a 

state-of-the-art solution for generating the prefix graph 

structures. This was accomplished by combining the 

two pruning approaches into the prior. The addition of 

two different methods of pruning into the earlier 

iteration makes it possible to achieve both of these 

goals. 

 
Fig.1. High-speed adder DSE 

 

2. BACKGROUND WORK 

Graph Structured Data  

G = (a, V, E) defines a graph, where an is a global 

attribute1, V is the set of nodes where V = vii=1:Nv 

with vi being the node's attribute, and E is the set of 
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edges where E = ek, vk, ukk=1:Ne where ek is the 

attribute on the edge, vk is the attribute on the nodes 

that are connected by the edge, and uk is the set of 

nodes. The methods shown here are not limited to 

undirected graphs; in fact, they can be used with many 

different types of graphs. 

Conditional Neural Processes 

Conditional Neural Processes (CNPs) are a subset of 

the more well-known Gaussian Process. A CNP takes 

in an IRdx at the xi input and outputs another at the yi 

output. By placing restrictions on any given set of 

context points XC:= (xi)iC and their associated 

outcomes YC, we are able to design a family of 

conditional distributions that may be realized. The 

conditional distribution can therefore be used to 

characterize an unlimited number of objectives XT:= 

(xi)iT and their associated outcomes YT. The model 

does not care what sequence the context clues and the 

targets are given in. Because of this invariance, 

random samples of edges can be used in learning and 

imputation. We shall use C T as an example, although 

the model is defined for any combination of these two 

parameters. 

To do this, we use the commutative operation 2, which 

translates elements in some IRd to a single element in 

the same space, to add up the data about the context 

points. This is known as the rC context vector in the 

academic world. The detected context points have their 

data condensed into rC. The CNP is now formally 

learning this conditional distribution. 

 
In order to put this into action, we must first provide 

the context points to a DNN h, which will then build 

an embedding ri of each context point, of a length we 

specify. At each context point, multiply the 

representation vector by the constant to get rC. Based 

on the assumption of rC, we may calculate the 

distribution zi of the desired target outputs yi by 

decoding the target points XT. 

 
Edge Imputation  

In many settings, like traffic forecasting or social 

networks, its existence is acknowledged but its value is 

uncertain. In conventional edge imputation, a value 

estimate for the edge is created as a point estimate. 

Mean filling, regression, and classification are all 

viable options for this [11]. Traditional approaches, 

especially mean filling, may obscure vital aspects of 

the edge values, such as variance. To see how this 

works in practice, consider the following statement: 

"Bias in variances and covariances can be greatly 

reduced by using a conditional distribution and 

replacing missing values with draws from this 

distribution." This, together with the neural structure 

of the conditional estimation, lends credence to the 

idea that Graph Neural Processes are useful in 

imputation because they preserve essential features of 

edge values. 

Bayesian Deep Learning 

A Bayesian neural network is trained by providing it 

with a series of inputs (X = x1, • • •, xn) and expecting 
it to produce a sequence of outputs (Y = f(x)). The 

correlation between x and y is commonly explained 

using a fixed neural network since it seems reasonable. 

There is a lot written about this, and as a result, two 

distinct schools of Bayesian Deep Learning have 

developed. There are many more options available 

than just these two. To begin, a neural network's 

hidden layer weights W are estimated using a 

probability distribution. It can be thought of as 

simulating a random variable with a known prior 

distribution over the weights. Here we keep track of 

how much of an unknown the neuronal shift is from 

the outset. The output of the neural network can be 

regarded of as a random variable because the weight 

values W are not fixed. The neural network and loss 

function are used to learn a generative model. 

Integrating with regard to the posterior distribution of 

W yields predictions from such networks. 

 
There are many proposed solutions in the academic 

literature, despite the fact that this integral is 

notoriously difficult to compute in practice. The output 

of a Bayesian neural network encodes a distribution 

across all possible outcomes for a given set of inputs. 

This immensely useful aspect of Bayesian deep 

learning can be captured with the use of GNPs. The 

output of a Graph Neural Process can be represented as 

a random variable, whose conditional distribution can 

be taught. Unlike the first type of Bayesian neural 

networks, the weights W in this research did not come 

from a random distribution. 

 

3. ADDER FEATURE EXTRACTION AND 

REGRESSION 

 

Characteristics employed by conventional machine 

learning methods are, for the most part, created by 

hand with the assistance of domain experts. Previous 

research on machine learning-based adder DSE, which 

does things like employ hand-engineered features and 

splits the feature extractor and the resulting learning 
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model, follows this line of reasoning. Separating them 

increases the likelihood that the whole system will 

have to settle for less-than-ideal results. 

To avoid needing domain expertise or laborious 

feature extraction, deep learning algorithms aim to 

employ a general-purpose learning technique to 

automatically discover high-level features from data. 

The end-to-end learning system has also achieved 

recent progress in a number of EDA-related domains. 

Using the automatic feature extractor modified for 

prefix adder networks and the regressor, we construct a 

full-stack, deep learning-based model called GNP. 

This section reveals the anticipated GNP's elaborate 

tree structure. The suggested multibranch flow is 

illustrated in Figure 2; it is supported by a spine (the 

encoder of the graph autoencoder) and operates 

concurrently on two branches (the decoder of the 

graph autoencoder and the NP, which stands in for the 

typical Gaussian process). An input prefix adder's 

latent representation is obtained by using a graph 

autoencoder (GAE) on the underlying data and the 

input stream. The regression values and associated 

uncertainty for stream II are generated by an NP that 

employs an encoder-decoder design. 

 
Fig. 2. Diagram of the proposed graph neural process 

Algorithm 1 Graph Neural Processes 

 
4. RESULTS 
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Figure 3: The biggest eigen value encodes enough 

GNP information in m experiments. 

 

That is to say, for a broad span of m values, the 

findings are inconclusive. Let's start with the fact that 

the GNP has the highest F1-score on 14 of the 16 

datasets and the highest recall on 14 of the 16 datasets 

(recall is identical with classification accuracy in this 

context). By learning an abstract representation of the 

data and a conditional distribution across edge values, 

the Graph Neural Process achieves superior 

performance than both naïve and strong baselines in 

edge imputation. This may be done with datasets 

containing anywhere from a few hundred to more than 

nine thousand graphs using the GNP. We also remark 

that the GNP can ultimately win out over class 

distinctions. 

 
Table 1: Features of the explored data sets 

AIDS 

The AIDS Antiviral Screen dataset compiles the 

findings obtained from tests conducted on thousands of 

different compounds to assess whether or not these 

compounds exhibit anti-HIV activity. Through the use 

of the screen's results, the data relevant to these 

substances is presented in the form of a chemical 

graph. On a dataset of equivalent size, the GNP 

displays performance that is 7% better than that of the 

RF. This advantage can be attributed to the fact that 

the GNP has more features.  

bzr,cox2,dhfr,er.  

An investigation into the pharmacophore kernel was 

carried out with the assistance of the chemical 

compound databases BZR, COX2, DHFR, and ER. 

The 3D coordinates of the compounds are included in 

each and every one of these datasets. On these 

datasets, different algorithms produce variable 

outcomes; these are the datasets that, on average, have 

orders of magnitude more edges than the other 

datasets. These are the datasets that have been 

subjected to the various methods. These datasets have 

a considerable class imbalance; if you guess the edge 

label that occurs most frequently, you will have an 

accuracy of approximately 90%. For example, the bzr 

dataset contains 61,594 entries in class 1, yet there are 

only 7,273 records in total throughout the next four 

classes combined. In spite of this, the GNP has the best 

F1 and recall on two out of the four of these, whereas 

random forest has the highest precision on three out of 

the four of these. across addition to the fact that there 

is an overwhelming amount of data to deal with, it is 

probable that the difficulty can be attributable to the 

fact that the classes are not dispersed evenly across the 

world. 

Mutagenicity, MUTAG.  

There are 188 unique chemical compounds that make 

up the MUTAG dataset. Each of these chemicals has 

been classified into one of two groups depending on 

the mutagenic effect it has on a bacterial population. 

Despite the fact that the mutagenicity dataset includes 

a collection of chemicals and information regarding 

their interactions with in vitro, the dataset has been 

criticized for its lack of transparency. Although both 

GNP and RF are much more accurate than naive 

baselines, the results of this particular test show that 

GNP performs somewhat better than random forest by 

a few percentage points. 

PTC_*.  

The several datasets for the Predictive Toxicology 

Challenge each contain several hundred organic 

compounds that have been categorized according to 

the degree to which they induce cancer in male and 

female mice and rats. The goal of this challenge is to 

develop a method that can accurately predict the 

likelihood that a substance will cause cancer in 

animals. On the PTC family of graphs, the 

performance of GNP is superior to that of random 

forests by a margin of 10–15% in terms of precision 
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and by 3–10% in terms of F1-score; nonetheless, both 

methods perform better than using naive baselines. 

Tox21_*.  

The human nuclear receptor signaling and stress 

pathway was probed with a total of 10,000 unique 

chemical compounds, and the data presented here is 

the result of those investigations. The principal goals 

of the project were to improve human health in general 

and conduct research on the relationships between 

structure and activity. On the Tox family of graphs, the 

GNP displays much greater performance in 

comparison to every other model by approximately 

20% in precision, approximately 12% in F1, and 

approximately 10% in recall. 

 
Figure 4: Our method is 0.2 better. GNPs' edge 

imputation works across metrics and datasets. 

 
Figure 5: Experimental recall graph compared with 

baselines 

 
Figure 6: Experimental F1-score graph compared with 

baselines 

5. CONCLUSION 

This work presents a novel approach to design space 

exploration through Graph Neural Network-based 

modeling, offering a learning-driven alternative to 

traditional exhaustive or heuristic methods. By 

leveraging the structural nature of design problems and 

encoding them as graph representations, our 

framework enables efficient learning and prediction of 

performance metrics, guiding exploration toward 

optimal or near-optimal configurations with 

significantly fewer evaluations. 

Experimental results across various domains confirm 

that GNNs are capable of capturing the intricacies of 

design dependencies and outperform traditional DSE 

strategies in both speed and accuracy. The model 

generalizes well across unseen design instances, 

making it a promising tool for scalable and intelligent 

design automation. 

 

In conclusion, integrating graph learning into DSE 

opens up new pathways for automated, intelligent 

engineering. Future work may include incorporating 

reinforcement learning for adaptive exploration, 

expanding to multi-objective optimization, and 

deploying the framework in real-time design 

environments where continuous adaptation and 

feedback are required. 
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